4,201 research outputs found

    Infrared structure of e+e3e^+e^- \to 3 jets at NNLO: QED-type contributions

    Get PDF
    The NNLO QCD corrections to the e+e3e^+e^- \to 3 jets can be decomposed according to their colour factors. Out of the seven colour factors, three are of QED-type: 1/N21/N^2, NF/NN_F/N and NF2N_F^2. We use the antenna subtraction method to compute these contributions, providing complete expressions for the subtraction terms in NF/NN_F/N and NF2N_F^2.Comment: Talk presented at Loops and Legs 2006, Eisenac

    High-precision acoustic helium signatures in 18 low-mass low-luminosity red giants. Analysis from more than four years of Kepler observations

    Get PDF
    High-precision frequencies of acoustic modes in red giant stars are now available thanks to the long observing length and high-quality of the light curves provided by the NASA Kepler mission, thus allowing to probe the interior of evolved cool low-mass stars with unprecedented level of detail. We characterize the acoustic signature of the helium second ionization zone in a sample of 18 low-mass low-luminosity red giants by exploiting new mode frequency measurements derived from more than four years of Kepler observations. We analyze the second frequency differences of radial acoustic modes in all the stars of the sample by using the Bayesian code Diamonds. We find clear acoustic glitches due to the signature of helium second ionization in all the stars of the sample. We measure the acoustic depth and the characteristic width of the acoustic glitches with a precision level on average around \sim2% and \sim8%, respectively. We find good agreement with theoretical predictions and existing measurements from the literature. Lastly, we derive the amplitude of the glitch signal at νmax\nu_\mathrm{max} for the second differences and for the frequencies with an average precision of \sim6%, obtaining values in the range 0.14-0.24 μ\muHz, and 0.08-0.33 μ\muHz, respectively, which can be used to investigate the helium abundance in the stars.Comment: 12 pages, 19 figures, 3 tables. Accepted for publication in A&

    Bayesian peak bagging analysis of 19 low-mass low-luminosity red giants observed with Kepler

    Get PDF
    The currently available Kepler light curves contain an outstanding amount of information but a detailed analysis of the individual oscillation modes in the observed power spectra, also known as peak bagging, is computationally demanding and challenging to perform on a large number of targets. Our intent is to perform for the first time a peak bagging analysis on a sample of 19 low-mass low-luminosity red giants observed by Kepler for more than four years. This allows us to provide high-quality asteroseismic measurements that can be exploited for an intensive testing of the physics used in stellar structure models, stellar evolution and pulsation codes, as well as for refining existing asteroseismic scaling relations in the red giant branch regime. For this purpose, powerful and sophisticated analysis tools are needed. We exploit the Bayesian code Diamonds, using an efficient nested sampling Monte Carlo algorithm, to perform both a fast fitting of the individual oscillation modes and a peak detection test based on the Bayesian evidence. We find good agreement for the parameters estimated in the background fitting phase with those given in the literature. We extract and characterize a total of 1618 oscillation modes, providing the largest set of detailed asteroseismic mode measurements ever published. We report on the evidence of a change in regime observed in the relation between linewidths and effective temperatures of the stars occurring at the bottom of the RGB. We show the presence of a linewidth depression or plateau around νmax\nu_\mathrm{max} for all the red giants of the sample. Lastly, we show a good agreement between our measurements of maximum mode amplitudes and existing maximum amplitudes from global analyses provided in the literature, useful as empirical tools to improve and simplify the future peak bagging analysis on a larger sample of evolved stars.Comment: 78 pages, 46 figures, 22 tables. Accepted for publication in A&

    Deep-inelastic Electron-Photon Scattering at High Q^2 : Neutral and Charged Current Reactions

    Get PDF
    We present the results of a calculation of deep inelastic electron-photon scattering at a linear collider for very high virtuality of the intermediate gauge boson up to NLO in perturbative QCD. The real photon is produced unpolarized via the Compton back scattering of laser light of the incoming beam. For Q2Q^2 values close to the masses squared of the Z and W gauge bosons, the deep inelastic electron-photon scattering process receives important contributions not only from virtual photon exchange but also from the exchange of a Z-boson and a W-boson. We find that the total cross section for center of mass energies above 500GeV500 \rm{GeV} is at least of O(pb){\cal O}(pb) and has an important charged current contribution.Comment: Talk given at the International Conference on the Structure and Interactions of the Photon, PHOTON 99, Freiburg im Breisgau, Germany, May 23-27, 1999. To be published in the Proceedings. 6 pages, 6 postscript figures. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ttp99/ttp99-30/ or via www at http://www-ttp.physik.uni-karlsruhe.de/Preprints

    Measuring the Photon Fragmentation Function at HERA

    Full text link
    The production of final state photons in deep inelastic scattering originates from photon radiation off leptons or quarks involved in the scattering process. Photon radiation off quarks involves a contribution from the quark-to-photon fragmentation function, corresponding to the non-perturbative transition of a hadronic jet into a single, highly energetic photon accompanied by some limited hadronic activity. Up to now, this fragmentation function was measured only in electron-positron annihilation at LEP. We demonstrate by a dedicated parton-level calculation that a competitive measurement of the quark-to-photon fragmentation function can be obtained in deep inelastic scattering at HERA. Such a measurement can be obtained by studying the photon energy spectra in γ+(0+1)\gamma + (0+1)-jet events, where γ\gamma denotes a hadronic jet containing a highly energetic photon (the photon jet). Isolated photons are then defined from the photon jet by imposing a minimal photon energy fraction. For this so-called democratic clustering approach, we study the cross sections for isolated γ+(0+1)\gamma + (0+1)-jet and γ+(1+1)\gamma + (1+1)-jet production as well as for the inclusive isolated photon production in deep inelastic scattering.Comment: 23 pages, LaTe

    Isolated Photons in Deep Inelastic Scattering

    Full text link
    Photon radiation at large transverse momenta at colliders is a detailed probe of hard interaction dynamics. The isolated photon production cross section in deep inelastic scattering was measured recently by the ZEUS experiment, and found to be considerably larger than theoretical predictions obtained with widely used event generators. To investigate this discrepancy, we perform a dedicated parton-level calculation of this observable, including contributions from fragmentation and large-angle radiation. Our results are in good agreement with all aspects of the experimental measurement.Comment: 4 pages, 3 figure
    corecore